如图,在平面直角坐标系中,梯形ABCD的顶点坐标分别为A,B,,D,将梯形ABCD绕点D逆时针旋转90°得到梯形.(1)在平面直角坐标系中画出梯形A1B1C1D,则的坐标为 ,的坐标为 ,的坐标为 ;(2)点C旋转到点的路线长为 (结果保留).
解方程:(1) (2) .
已知、、为实数,且,求方程的根.
如图,方格纸中的每个小方格都是正方形,△ABC的顶点均在格点上,建立平面直角坐标系. (1)以原点为对称中心,画出与△ABC关于原点对称的△A1B1C1,A1 的坐标是 . (2)将原来的△ABC绕着点B顺时针旋转90°得到△A2B2C2,试在图上画出△A2B2C2的图形.
(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.试猜想BD,CE,DE三者的数量关系?(直接写出结果) (2) 如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC= ,其中 为任意锐角或钝角.请问(1)中的结论是否成立?如成立,请你给出证明;若不成立,请说明理由. (3) 拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状,并说明理由.
如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.