(本小题满分12分)袋子中有质地、大小完全相同的4个球,编号分别为1,2,3,4.甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,若两个编号的和为奇数算甲赢,否则算乙赢.记基本事件为,其中分别为甲、乙摸到的球的编号。(1)列举出所有的基本事件,并求甲赢且编号的和为5的事件发生的概率;(2)比较甲胜的概率与乙胜的概率,并说明这种游戏规则是否公平。(无详细解答过程,不给分)(3) 如果请你猜这两球的号码之和,猜中有奖.猜什么数获奖的可能性大?说明理由.
在锐角中,三内角所对的边分别为. 设, (Ⅰ)若,求的面积; (Ⅱ)求的最大值.
. 设函数=(为自然对数的底数),,记. (Ⅰ)为的导函数,判断函数的单调性,并加以证明; (Ⅱ)若函数=0有两个零点,求实数的取值范围.
已知点A(2,0),. P为上的动点,线段BP上的点M满足|MP|=|MA|. (Ⅰ)求点M的轨迹C的方程; (Ⅱ)过点B(-2,0)的直线与轨迹C交于S、T两点,且,求直线的方程.
某食品厂进行蘑菇的深加工,每公斤蘑菇的成本20元,并且每公斤蘑菇的加工费为元(为常数,且,设该食品厂每公斤蘑菇的出厂价为元(),根据市场调查,销售量与成反比,当每公斤蘑菇的出厂价为30元时,日销售量为100公斤. (Ⅰ)求该工厂的每日利润元与每公斤蘑菇的出厂价元的函数关系式; (Ⅱ)若,当每公斤蘑菇的出厂价为多少元时,该工厂的利润最大,并求最大值.
如图,在五面体ABCDEF中,FA平面ABCD,AD//BC//FE,ABAD,AF=AB=BC=FE=AD. (Ⅰ)求异面直线BF与DE所成角的余弦值; (Ⅱ)在线段CE上是否存在点M,使得直线AM与平面CDE所成角的正弦值为?若存在,试确定点M的位置;若不存在,请说明理由.