(本小题满分12分)袋子中有质地、大小完全相同的4个球,编号分别为1,2,3,4.甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,若两个编号的和为奇数算甲赢,否则算乙赢.记基本事件为,其中分别为甲、乙摸到的球的编号。(1)列举出所有的基本事件,并求甲赢且编号的和为5的事件发生的概率;(2)比较甲胜的概率与乙胜的概率,并说明这种游戏规则是否公平。(无详细解答过程,不给分)(3) 如果请你猜这两球的号码之和,猜中有奖.猜什么数获奖的可能性大?说明理由.
(本小题满分12分)设函数。(1)求,求的取值范围。(2)求的最值,并给出最值时对应的的值。
(本小题满分12分)设全集为R,集合,,(1)求:;(2)若集合,满足,求实数的取值范围。
(本小题满分10分)已知在半径为10的圆O中,弦AB的长为10。(1)求弦AB所对的圆心角的大小。(2)求所在的扇形弧长及弧所在的弓形的面积S。
已知椭圆的离心率为,且过点(1)求椭圆的标准方程:(2)四边形ABCD的顶点在椭圆上,且对角线AC,BD过原点O,若①求的最值:②求证:四边形ABCD的面积为定值.
已知圆A:x2+y2-2x-2y-2=0.(1)若直线l:ax+by-4=0平分圆A的周长,求原点O到直线l的距离的最大值;(2)若圆B平分圆A的周长,圆心B在直线y=2x上,求符合条件且半径最小的圆B的方程.