(本小题满分12分)已知函数(1)求f(x)在[0,1]上的极值;(2)若对任意成立,求实数a的取值范围;(3)若关于x的方程在[0,2]上恰有两个不同的实根,求实数b的取值范围.
选修4-4 :坐标系与参数方程 已知圆方程为. (1)求圆心轨迹的参数方程; (2)点是(1)中曲线上的动点,求的取值范围.
已知向量,动点到定直线的距离等于,并且满足,其中为坐标原点,为非负实数. (1)求动点的轨迹方程; (2)若将曲线向左平移一个单位,得曲线,试判断曲线为何种类型; (3)若(2)中曲线为圆锥曲线,其离心率满足,当是曲线的两个焦点时,则圆锥曲线上恒存在点,使得成立,求实数的取值范围.
四棱锥的底面为正方形,底面,,为上的点. (1)求证:无论点在上如何移动,都有; (2)若//平面,求二面角的余弦值.
已知定点A(-2,-4),过点A作倾斜角为45 的直线l,交抛物线y2=2px(p>0)于B、C两点,且|BC|=210.(Ⅰ)求抛物线的方程;(Ⅱ)在(Ⅰ)中的抛物线上是否存在点D,使得|DB|=|DC|成立?如果存在,求出点D的坐标;如果不存在,请说明理由.
甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是,且面试是否合格互不影响.求:(Ⅰ)至少有1人面试合格的概率;(Ⅱ)签约人数的分布列和数学期望.