已知函数的定义域为,且同时满足:①;②若,都有;③若,,,都有. (1) 求的值; (2) 当时,求证:.
已知数列中,,,其前项和满足(,).(Ⅰ)求证:数列为等差数列,并求的通项公式;(Ⅱ)设, 求数列的前项和 ;(Ⅲ)设(为非零整数,),试确定的值,使得对任意,有恒成立.
已知函数y=的定义域为R,解关于x的不等式
如图,某观测站在城的南偏西的方向上,由城出发有一公路,走向是南偏东,在处测得距为31公里的公路上处,有一人正沿公路向城走去,走了20公里后,到达处,此时、间距离为公里,问此人还需要走多少公里到达城.
制订投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损,某投资人打算投资甲、乙两个项目,根据预测,甲、乙两个项目可能的最大盈利率分别为100﹪和50﹪,可能的最大亏损率分别为30﹪和10﹪,若投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?
已知、、分别是的三个内角、、所对的边;(1)若面积,且、、成等差数列,求、的值; (2)若,且,试判断的形状。