如图,在直角坐标系的直角顶点A,C始终在x轴的正半轴上,B,D在第一象限内,点B在直线OD上方,OC=CD,OD=2,M为OD的中点,AB与OD相交于E,当点B位置变化时,试解决下列问题:(1)填空:点D坐标为 ;(2)设点B横坐标为t,请把BD长表示成关于t的函数关系式,并化简;(3)等式BO=BD能否成立?为什么?(4)设CM与AB相交于F,当△BDE为直角三角形时,判断四边形BDCF的形状,并证明你的结论.
实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等. 如图1,一束光线m射到平面镜a上,被a反射后的光线为n,则入射光线m、反射光线n与平面镜a所夹的锐角∠1=∠2. (1) 如图2,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且∠1=50°,则∠2=_____°,∠3=_____°. (2) 在(1)中m∥n,若∠1=55°,则∠3=______°;若∠1=40°,则∠3=______°. (3) 由(1)、(2),请你猜想:当两平面镜a、b的夹角∠3=______°时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行.你能说明理由吗?
探究与发现: (1)探究一:三角形的一个内角与另两个内角的平分线所夹的角之间的关系 已知:如图1,在△ADC中,DP、CP分别平分∠ADC和∠ACD, 试探究∠P与∠A的数量关系,并说明理由. 图1图2图3 (2)探究二:四边形的两个个内角与另两个内角的平分线所夹的角之间的关系 已知:如图2,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试探究∠P与∠A+∠B的数量关系,并说明理由. (3)探究三:六边形的四个内角与另两个内角的平分线所夹的角之间的关系 已知:如图3,在六边形ABCDEF中,DP、CP分别平分∠EDC和∠BCD,请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:__ __ __.
如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F. (1)CD与EF平行吗?为什么? (2)如果∠1=∠2,那么DG∥BC吗?为什么?
如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=45°,∠BDC=60°。 (1)求∠C的度数; (2)求∠BED的度数.
一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.