图3.1、图3.2、图3.3均是单位为1的方格图.(1)请把方格图3.1中的带阴影的图形适当剪开,重新拼成正方形;(画出分割线,在图3.2中画出拼成正方形的草图)(2)所拼成正方形的边长为多少?周长为多少?(3)利用这个事实,在图3.3的数轴上画出表示的点A.(要求保留画图痕迹)(4)在图3.3的数轴上画出表示的点B.(要求保留画图痕迹)
如图,有一张边长为米的正方形硬纸张,现将四个角截去四个边长为米的小正方形,然后折成一个无盖的长方体盒子.(>2>0)(1)直接写出盒子底面边长的长度;(用含、的代数式表示)(2)截去四个小正方形后,剩余硬纸张的面积S为多少平方米?请用含、的代数式表示出来,并把此代数式分解因式;(3)若无盖长方体盒子的体积为立方米,且截去四个小正方形后,剩余硬纸张的面积为平方米,求、的值.
一个正方形的边长增加后的正方形面积比它的边长增加后的面积多.若设原来这个正方形的边长为,(1)当边长增加3 时,则正方形的面积为 ;当边长增加后,正方形的面积为 .(均用含的代数式表示)(2)求原来这个正方形的面积
已知,.(1)求的值;(2)求的值.
先化简,再求值(每小题6分,计12分):(1),其中; (2),其中=-2。
(本小题10分)已知二次函数( b,c为常数).(Ⅰ)当b =2,c =-3时,求二次函数的最小值;(Ⅱ)当c =5时,若在函数值y =1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.