(本小题满分12分) (1)连续抛掷两枚正方体的骰子(它们的六个面分别标有数字1,2,3,4,5,6),记所得朝上的面的点数分别为,过坐标原点和点P()的直线的倾斜角为 ,求的概率;(2)若,且,过坐标原点和点P()的直线的斜率为,求的概率。
(本题满分15分) 已知中心在原点O,焦点在x轴上,离心率为的椭圆过点(,). (Ⅰ) 求椭圆的方程; (Ⅱ) 设不过原点O的直线l与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.
(本题满分14分) 在四棱锥P—ABCD中,底面ABCD是一直角梯,与底面成30°角. (1)若为垂足,求证:; (2)求平面PAB与平面PCD所成的锐二面角的正切值.
(本题满分14分) 已知等差数列的前项和为,且. (I)求数列的通项公式; (II)若数列满足,求数列的前项和.
(本题满分14分) 在△ABC中,角A,B,C所对的边为a,b,c,已知sin=. (Ⅰ) 求cos C的值; (Ⅱ) 若△ABC的面积为,且sin2 A+sin2B=sin2 C,求c的值.
(本大题满分14分) 已知函数,其中,b∈R且b≠0。 (1)求的单调区间; (2)当b=1时,若方程没有实根,求a的取值范围; (3)证明:,其中.