本题满分12分)为了预防流感,某学校对教室用药物消毒法进行消毒。已知:⑴药物喷洒过程中,室内每立方米空气中含药量y(mg)与时间t(h)成正比;⑵药物喷洒完毕后,y与t的函数关系式为(为常数),如图所示,根据图中提供的信息,回答下列问题:(Ⅰ)求从药物喷洒开始,每立方米空气中的含药量y(mg)与时间t(h)之间的函数关系式;(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25mg以下时,学生方可进入教室,那么从药物喷洒开始,至少需要经过几小时后学生才能回到教室?
已知数列是等差数列, ;数列的前n项和是,且.(1) 求数列的通项公式; (2) 求证:数列是等比数列;(3) 记,求的前n项和.
如图,在四棱锥中,,,底面是菱形,且,为的中点.(1)求四棱锥的体积;(2)证明:平面;(3)侧棱上是否存在点,使得平面?并证明你的结论.
某公司在过去几年内使用某种型号的灯管1000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如下表所示:
(1)将各组的频率填入表中;(2)根据上述统计结果,计算灯管使用寿命不足1500小时的频率;(3)该公司某办公室新安装了这种型号的灯管2支,若将上述频率作为概率,试求恰有1支灯管的使用寿命不足1500小时的概率.
在中,角A,B,C的对边分别为a,b,c,且满足(1)求角B的大小; (2)设向量,求的最大值.
若曲线C:,过上一点作一斜率为的直线交曲线C于另一点,点的横坐标构成数列,其中.(1)求与的关系式;(2)若,,求的通项公式;(3)求证:.