本题满分12分)为了预防流感,某学校对教室用药物消毒法进行消毒。已知:⑴药物喷洒过程中,室内每立方米空气中含药量y(mg)与时间t(h)成正比;⑵药物喷洒完毕后,y与t的函数关系式为(为常数),如图所示,根据图中提供的信息,回答下列问题:(Ⅰ)求从药物喷洒开始,每立方米空气中的含药量y(mg)与时间t(h)之间的函数关系式;(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25mg以下时,学生方可进入教室,那么从药物喷洒开始,至少需要经过几小时后学生才能回到教室?
若函数为定义域上单调函数,且存在区间(其中),使得当时,的取值范围恰为,则称函数是上的正函数,区间叫做等域区间.(1)已知是上的正函数,求的等域区间;(2)试探究是否存在实数,使得函数是上的正函数?若存在,请求出实数的取值范围;若不存在,请说明理由.
已知函数,其中 (1)判别函数的奇偶性; (2)判断并证明函数在上单调性; (3)是否存在这样的负实数,使对一切恒成立,若存在,试求出k取值的集合;若不存在,说明理由.
我国加入WTO后,根据达成的协议,若干年内某产品关税与市场供应量的关系允许近似的满足:(其中为关税的税率,且,为市场价格,、为正常数),当时的市场供应量曲线如图:(1)根据图象求、的值;(2)若市场需求量为,它近似满足.当时的市场价格称为市场平衡价格.为使市场平衡价格控制在不低于9元,求税率的最小值.
函数(其中)的振幅为,周期为.(1)求的解析式;(2)求的单调增区间;(3)求在的值域.
已知(1)求的值;(2)求的值;(3)若是第三象限角,求的值.