(本小题满分13分)已知,数列的前n项和为,点在曲线 上且.(1)求数列的通项公式;(2)数列的前n项和满足,若数列是等差数列,求;(3)求证:
已知p:|1-|≤2,q:x2-2x+1-m2≤0(m>0),且p是q的必要而不充分条件,求实数m的取值范围.
(1)是否存在实数p,使“4x+p<0”是“x2-x-2>0”的充分条件?如果存在,求出p的取值范围;(2)是否存在实数p,使“4x+p<0”是“x2-x-2>0”的必要条件?如果存在,求出p的取值范围.
写出下列命题的“否定”,并判断其真假.(1)p:x∈R,x2-x+≥0;(2)q:所有的正方形都是矩形;(3)r:x∈R,x2+2x+2≤0;(4)s:至少有一个实数x,使x3+1=0.
分别指出由下列命题构成的“pq”、“pq”、“p”形式的命题的真假.(1)p:4∈{2,3},q:2∈{2,3};(2)p:1是奇数,q:1是质数;(3)p:0∈,q:{x|x2-3x-5<0}R;(4)p:5≤5,q:27不是质数;(5)p:不等式x2+2x-8<0的解集是{x|-4<x<2},q:不等式x2+2x-8<0的解集是{x|x<-4或x>2}.
已知两个命题r(x):sinx+cosx>m,s(x):x2+mx+1>0.如果对x∈R,r(x)与s(x)有且仅有一个是真命题.求实数m的取值范围.