(12分)已知函数 (1)求的最小正周期及取得最大值时x的集合. (2)在平面直角坐标系中画出函数在上的图象(在图上标明关键点的坐标)
数列的前项和为,且是和的等差中项,等差数列满足,.(1)求数列、的通项公式;(2)设,数列的前项和为,证明:.
在无穷数列中,,对于任意,都有,. 设, 记使得成立的的最大值为.(1)设数列为1,3,5,7,,写出,,的值;(2)若为等差数列,求出所有可能的数列;(3)设,,求的值.(用表示)
设是椭圆上不关于坐标轴对称的两个点,直线交轴于点(与点不重合),O为坐标原点. (1)如果点是椭圆的右焦点,线段的中点在y轴上,求直线AB的方程; (2)设为轴上一点,且,直线与椭圆的另外一个交点为C,证明:点与点关于轴对称.
已知函数,其中.(1)若,求函数的极值;(2)当时,试确定函数的单调区间.
如图,在三棱锥中,底面,,为的中点, 为的中点,,.(1)求证:平面;(2)求与平面成角的正弦值;(3)设点在线段上,且,平面,求实数的值.