(本小题12分) 已知二次函数。(1)指出图像的开口方向、对称轴方程、顶点坐标;(2)画出它的图像,并说明其图像由的图像经过怎样平移得来;(3)求函数的最大值或最小值;(4)写出函数的单调区间(不必证明)。
口袋中有5个大小相同的小球,其中1个小球标有数字“3”,2个小球标有数字“2”,2个小球标有数字“1”,每次从中任取一个小球,取后不放回,连续抽取两次。 (I)求两次取出的小球所标数字不同的概率; (II)记两次取出的小球所标数字之和为X,求事件的概率。
数列中,,(是常数,),且成公比不为的等比数列. (Ⅰ)求的值; (Ⅱ)求的通项公式.
已知函数. (Ⅰ)求函数的最小正周期; (Ⅱ) 当时,求函数的最大值,最小值.
已知函数f(x)=-x3+x2-2x(a∈R). (1)当a=3时,求函数f(x)的单调区间; (2)若对于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,求实数a的取值范围; (3)若过点可作函数y=f(x)图象的三条不同切线,求实数a的取值范围.
如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形. (1)求该椭圆的离心率和标准方程; (2)过B1作直线l交椭圆于P,Q两点,使PB2⊥QB2,求直线l的方程.