(满分14分)已知不等式的解集为A,不等式的解集为B。(1)求A∩B; (2)若不等式的解集为A∩B,求不等式的解集。
已知函数,,其中. (1)设函数,若在区间是单调函数,求的取值范围;(2)设函数,是否存在,对任意给定的非零实数,存在惟一的非零实数(),使得成立?若存在,求的值;若不存在,请说明理由.
在平面直角坐标系中,已知点,点P是动点,且三角形的三边所在直线的斜率满足.(1)求点P的轨迹的方程;(2)设Q是轨迹上异于点的一个点,若,直线与交于点M,探究是否存点P使得和的面积满足,若存在,求出点P的坐标;若不存在,说明理由.
设为数列的前项和,对任意的,都有为常数,且.(1)求证:数列是等比数列;(2)设数列的公比,数列满足,求数列的通项公式;(3)在满足(2)的条件下,求数列的前项和.
在四棱锥中,,,平面,为 的中点,.(1)求四棱锥的体积;(2)若为的中点,求证:平面平面;(3)求二面角的大小.
某校一课题小组对西安市工薪阶层对“楼市限购令”态度进行调查,抽调了50人,他们月收入频数分布及对“楼市限购令”赞成人数如下表.
(1)完成下图的月收入频率分布直方图(注意填写纵坐标);(2)若从收入(单位:百元)在的被调查者中各随机选取两人进行追踪调查,记选中的4人中不赞成“楼市限购令”人数为,求随机变量的分布列和数学期望.