已知函数f(x)=-bx2+(2-b)x+1在x=x1处取得极大值,在x=x2处取得极小值,且0<x1<1<x2<2(1) 当x1=,x2=时,求a,b的值;(2)若w=2a+b,求w的取值范围;
已知an=n×0.8n(n∈N*). (1)判断数列{an}的单调性; (2)是否存在最小正整数k,使得数列{an}中的任意一项均小于k?请说明理由.
已知数列的通项公式an=(n∈N*),求数列前30项中的最大项和最小项.
如下表定义函数f(x):
对于数列{an},a1=4,an=f(an-1),n=2,3,4,…,求a2008.
已知函数f(x)=ax2+bx(a≠0)的导函数f′(x)=-2x+7,数列{an}的前n项和为Sn,点Pn(n,Sn)(n∈N*)均在函数y=f(x)的图象上,求数列{an}的通项公式及Sn的最大值.
已知数列{an}的前n项和Sn,求通项an. (1)Sn=3n-1; (2)Sn=n2+3n+1.