(本小题满分12分)如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC. (1) 求证:平面AB1C1⊥平面AC1; (2) 若AB1⊥A1C,求线段AC与AA1长度之比; (3) 若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,试确定点E的位置;若不存在,请说明理由.
已知椭圆的两个焦点分别为 离心率e= (1)求椭圆的方程。(2)若CD为过左焦点的弦,求的周长
求双曲线的实半轴长,虚半轴长,焦点坐标,离心率,渐近线方程。
已知函数(1)求函数的极值点;(2)若直线过点(0,—1),并且与曲线相切,求直线的方程;(3)设函数,其中,求函数在上的最小值.(其中e为自然对数的底数)
已知椭圆>b>的离心率为且椭圆的一个焦点与抛物线的焦点重合,斜率为的直线过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m).(1)求椭圆的标准方程;(2)求m的取值范围;(3)试用m表示△MPQ的面积S,并求面积S的最大值.
直三棱柱中,,,,,点D在上. (1)求证:;(2)若D是AB中点,求证:AC1∥平面B1CD;(3)当时,求二面角的余弦值.