若有穷数列(是正整数),满足,,,,即(是正整数,且),就称该数列为“对称数列”.(1)已知数列是项数为7的对称数列,且成等差数列,,试写出的每一项.(2)已知是项数为的对称数列,且构成首项为50,公差为的等差数列,数列的前项和为,则当为何值时,取到最大值?最大值为多少?(3)对于给定的正整数,试写出所有项数不超过的对称数列,使得成为数列中的连续项;当时,试求其中一个数列的前2008项和.
(10分)设和分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程实根的个数(重根按一个计). (Ⅰ)求方程有实根的概率; (Ⅱ)求的分布列和数学期望; (Ⅲ)求在先后两次出现的点数中有5的条件下,方程有实根的概率.
(10分)某运动员射击一次所得环数的分布如下:
现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为. (I)求该运动员两次都命中7环的概率 (II)求的分布列 (III)求的数学期望
(8分) 出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是 (I)求这位司机遇到红灯前,已经通过了两个交通岗的概率; (II)求这位司机在途中遇到红灯数ξ的期望和方差。
(6分)已知其中是常数,计算
2005年某市的空气质量状况分布如下表:
其中X50时,空气质量为优,时空气质量为良,时,空气质量为轻微污染。(1)求E(X)的值;(2)求空气质量达到优或良的概率。