(本小题满分14分)数列{}、{}的前n项和分别为,,且=1(n∈N*)。(1)证明数列{}是等比数列;(2)若数列{}满足:,且(n∈N*),求证:
设各项均为正数的数列 { a n } 满足 a 1 = 2 , a n = a 3 2 n + 1 a n + 2 ( n ∈ N * ) . (Ⅰ)若 a 2 = 1 4 ,求 a 3 , a 4 , 并猜想 a 2 cos 的值(不需证明); (Ⅱ)记 b n = a 3 a 2 ⋯ a n ( n ∈ N * ) 对n≥2恒成立,求 a 2 的值及数列 { b n } 的通项公式.
如图, M - 2 , 0 和 N 2 , 0 的平面上的两点,动点 P 满足: P M + P N = 6
(Ⅰ)求点 P 的轨迹方程; (Ⅱ)若 P M · P N = 2 1 - cos ∠ M P N ,求点 P 的坐标。
设函数 f ( x ) = a x 2 + b x + c ( a ≠ 0 ) ,曲线 y = f ( x ) 通过点 ( 0 , 2 a + 3 ) ,且在点 ( - 1 , f ( - 1 ) ) 处的切线垂直于 y 轴.
(Ⅰ)用 a 分别表示 b 和 c ; (Ⅱ)当 b c 取得最小值时,求函数 g ( x ) = - f ( x ) e x 的单调区间。
如图,在 △ A B C 中,B= B = 90 ° ,AC= A C = 15 2 , D 、 E 两点分别在 A B 、 A C 上.使 A D D B = A E E C = 2 , D E = 3 。现将 △ A B C 沿 D E 折成直二面角,求:
(Ⅰ)异面直线 A D 与 B C 的距离; (Ⅱ)二面角 A - E C - B 的大小(用反三角函数表示).
甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为 1 2 ,且各局胜负相互独立.求:
(Ⅰ)打满3局比赛还未停止的概率;
(Ⅱ)比赛停止时已打局数 ξ 的分别列与期望 E ξ 。