某公司试销一种新产品,规定试销时销售单价不低于成本单价500元/件,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价(元/件),可近似看做一次函数的关系(图象如下图所示).(1)根据图象,求一次函数的表达式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元,①求S关于的函数表达式;②求该公司可获得的最大毛利润,并求出此时相应的销售单价.
(满分12分)设直线的方程为。(1)若在两坐标轴上的截距相等,求的方程;(2)若不经过第二象限,求的取值范围。
(满分10分)求函数的最大值和最小值。
(本题满分12分)对每个正整数n,是抛物线上的点,过焦点F的直线FAn交抛物线另一点。(1)试证:(2)取并为抛物线上分别为与为切点的两条切线的交点,求证
(本小题满分12分)如图:平面直角坐标系中为一动点,,,.(1)求动点轨迹的方程;(2)过上任意一点向作两条切线、,且、交轴于、,求长度的取值范围.
已知过点的动直线与圆:相交于、两点,是中点,与直线:相交于.(1)当时,求直线的方程;(2)探索是否与直线的倾斜角有关,若无关,请求出其值;若有关,请说明理由..