(本小题14分) 数列满足:,其中,(1)求;(2)若为等差数列,求常数的值; (3)求的前n项和。
(本题14分) 如图所示,在长方体中,AB=AD=1,AA1=2,M是棱CC1的中点(1)求异面直线A1M和C1D1所成的角的正切值;(2)证明:直线BM⊥平面A1B1M1
(本题12分)某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料。(1)求甲中奖且乙、丙都没有中奖的概率;(2)求中奖人数ξ的分布列及数学期望Eξ.
(本题12分) 已知函数.求:(1)求函数的最大值; (2)求函数的单调增区间。
设(1)求证:函数y=f(x)与y=g(x)的图像有两个交点;(2)设f(x)与g(x)的图像交点A、B在x轴上的射影为
已知向量=(3,-4)=(6,-3)=(5-m, -3-m)(1)若点A、B、C不能构成三角形,求实数m应满足的条件;(2)若△ABC为直角三角形,求实数m的值。