(本小题满分5分)如图,梯形ABCD中,AB∥CD,F是DC的中点,BF的延长线交射线AD于点G,, BG 交AC于点E.求证:=.
如图所示的一张矩形纸片(),将纸片折叠一次,使点与重合,再展开,折痕交边于,交边于,AC与EF交于点O,分别连结和.在线段上是否存在一点,使得2AE2=AC·AP?若存在,请说明点的位置,并予以证明;若不存在,请说明理由.
如图1是安装在斜屋面上的太阳能热水器,图2是安装该热水器的侧面示意图.已知,斜屋面的倾角为25°,长为2.1米的真空管AB与水平线AD的夹角为40°,安装热水器的铁架水平横管BC长0.2米,求铁架垂直管CE的长(结果精确到0.01米).(说明:sin40°≈0.645,cos40°≈0.766,sin25°≈0.423,cos25°≈0.906,tan25°≈0.466。)
如图,AB是⊙O的直径,D为圆周上任一点,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.(1)求证:;(2)若,⊙O的半径为3,求BC的长.
某人在电车路轨旁与路轨平行的路上骑车行走,他留意到每隔6分钟有一部电车从他后面驶向前面,每隔2分钟有一部电车从对面驶向后面。假设电车和此人行驶的速度都不变(分别为,表示),请你根据下面的示意图,求电车每隔几分钟(用t表示)从车站开出一部?
已知:如图(1),⊙O1与⊙O2相交于A、B两点,经过A点的直线分别交⊙O1、⊙O2于C、D两点(C、D不与B重合),连结BD,过点C作BD的平行线交⊙O1于点E,连BE. (1)求证:BE是⊙O2的切线; (2)如图(2),若两圆圆心在公共弦AB的同侧,其他条件不变,判断BE和⊙O2的位置关系(不要求证明).