(本小题满分5分)如图,梯形ABCD中,AB∥CD,F是DC的中点,BF的延长线交射线AD于点G,, BG 交AC于点E.求证:=.
已知:直线y=-2x-2与x轴交于点A,与y轴交于点C,抛物线经过点A、C、E,且点E(6,7)(1)求抛物线的解析式.(2)在直线AE的下方的抛物线取一点M使得构成的三角形AME的面积最大,请求出M点的坐标及△AME的最大面积.(3)若抛物线与x轴另一交点为B点,点P在x轴上,点D(1,-3),以点P、B、D为顶点的三角形与△AEB相似,求点P的坐标.
如图,在平面直角坐标系中,直线分别交轴、轴于两点.点、,以为一边在轴上方作矩形,且.设矩形CDEF与ABO重叠部分的面积为S. (1)求点、的坐标;(2)当b值由小到大变化时,求s与b的函数关系式;(3)若在直线上存在点,使等于,请直接写出的取值范围.
某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项 支出共4800元.设公司每日租出x辆车时,日收益为y元.(日收益=日租金收入一平均每日各项支出)(1)公司每日租出x辆车时,每辆车的日租金为 元(用含x的代数式表示);(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?
如图,在4×4的正方形方格中,△ABC的顶点都在边长为1的小正方形的顶点上.请你在图中画出一个与△ABC相似的△DEF,使得△DEF的顶点都在边长为1的小正方形的顶点上,且△ABC与△DEF的相似比为1∶2.
已知:关于x的方程 有两个不相等的实数根(其中k为实数). (1)求k的取值范围;(2)若k为非负整数,求此时方程的根.