(12)如图,排球运动员站在点O处练习发球,将球从点O正上方2米的点A处发出把球看成点,其运行的高度y(米)与运行的水平距离x(米)满足关系式y=a(x﹣6)2+h,已知球网与点O的水平距离为9米,高度为2.43米,球场的边界距点O的水平距离为18米.(1)当h=2.6时,求y与x的函数关系式.(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由.(3)若球一定能越过球网,又不出边界.则h的取值范围是多少?
某县为了解初中生对安全知识掌握情况,抽取了50名初中生进行安全知识测试,并将测试成绩进行统计分析,绘成如下的频数分布表和频数分布直方图(未完成):(1)完成频数分布直方图;(2)这个样本数据的中位数在第 组;(3)若将各组的组中值视为该组的平均成绩,则此次测试的平均成绩为 ;(4)若将90分以上(含90分)定为“优秀”等级,则该县10000名初中生中,获“优秀”等级的学生约为 人.
如图,已知抛物线y=ax2+bx+4与x轴交于A(,0)、B两点,与y轴交于C点,其对称轴为直线x=1.(1)直接写出抛物线的解析式 :(2)把线段AC沿x轴向右平移,设平移后A、C的对应点分别为A′、C′,当C′落在抛物线上时,求A′、C′的坐标;(3)除(2)中的点A′、C′外,在x轴和抛物线上是否还分别存在点E、F,使得以A、C、E、F为顶点的四边形为平行四边形,若存在,求出E、F的坐标;若不存在,请说明理由.
如图,△ABC的内接三角形,P为BC延长线上一点,∠PAC=∠B,AD为⊙O的直径,过C作CG⊥AD于E,交AB于F,交⊙O于G。(1)判断直线PA与⊙O的位置关系,并说明理由;(2)求证:AG2=AF·AB;(3)若⊙O的直径为10,AC=2,AB=4,求△AFG的面积.
电动自行车已成为市民日常出行的首选工具。据某市品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月销售216辆.(1)求该品牌电动车销售量的月平均增长率;(2)若该品牌电动自行车的进价为2300元,售价2800元,则该经销商1月至3月共盈利多少元?
中国“蛟龙”号深潜器目前最大深潜极限为7062.68米。某天该深潜器在海面下1800米处作业(如图),测得正前方海底沉船C的俯角为45°,该深潜器在同一深度向正前方直线航行2000米到B点,此时测得海底沉船C的俯角为60°.(1)沉船C是否在“蛟龙”号深潜极限范围内?并说明理由;(2)由于海流原因,“蛟龙”号需在B点处马上上浮,若平均垂直上浮速度为2000米/时,求“蛟龙”号上浮回到海面的时间.(参考数据:≈1.414,≈1.732)