、两城相距100km,在两地之间 (直线AB上)距城km处的地建一核电站给、两城供电,为保证城市安全,核电站与城市距离不得少于10km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数为0.3,若城供电量为20亿度/月,城为10亿度/月.(1)求月供电总费用表示成的函数;(2)核电站建在距A城多远,才能使供电费用最小?
(本小题共14分) 已知椭圆和圆:,过椭圆上一点引圆的两条切线,切点分别为. (Ⅰ)(ⅰ)若圆过椭圆的两个焦点,求椭圆的离心率; (ⅱ)若椭圆上存在点,使得,求椭圆离心率的取值范围; (Ⅱ)设直线与轴、轴分别交于点,,求证:为定值.
(本小题共14分) 设函数(). (Ⅰ)当时,求的极值; (Ⅱ)当时,求的单调区间.
(本小题共13分) 某学校高一年级开设了五门选修课.为了培养学生的兴趣爱好,要求每个学生必须参加且只能选修一门课程.假设某班甲、乙、丙三名学生对这五门课程的选择是等可能的. (Ⅰ)求甲、乙、丙三名学生参加五门选修课的所有选法种数; (Ⅱ)求甲、乙、丙三名学生中至少有两名学生选修同一门课程的概率; (Ⅲ)设随机变量为甲、乙、丙这三名学生参加课程的人数,求的分布列与数学期望.
(本小题共14分) 正方体的棱长为,是与的交点,是上一点,且.(Ⅰ)求证:平面; (Ⅱ)求异面直线与所成角的余弦值; (Ⅲ)求直线与平面所成角的正弦值.
(本小题共12分)
如图,在平面直角坐标系中,以轴为始边作两个锐角,它们的终边分别与单位圆交于两点.已知的横坐标分别为.