(本小题满分12分)已知向量。(1)若,求;(2)若函数的图像向右平移()个单位长度,再向下平移3个单位后图像对应的函数是奇函数,求的最大值。
设n和m是两个单位向量,其夹角是60°,求向量a=2m+n与b=2n-3m的夹角.
已知a=,且∈. (1)求的最值; (2)若|ka+b|=|a-kb| (k∈R),求k的取值范围.
设a=(cos,sin),b=(cos,sin),且a与b具有关系|ka+b|=|a-kb|(k>0). (1)用k表示a·b; (2)求a·b的最小值,并求此时a与b的夹角.
向量a=(cos23°,cos67°),向量b=(cos68°,cos22°). (1)求a·b; (2)若向量b与向量m共线,u=a+m,求u的模的最小值.
已知a=(cos,sin),b=(cos,sin)(0<<<). (1)求证:a+b与a-b互相垂直; (2)若ka+b与a-kb的模相等,求-.(其中k为非零实数)