已知椭圆C:,两个焦点分别为、,斜率为k的直线过右焦点且与椭圆交于A、B两点,设与y轴交点为P,线段的中点恰为B。(1)若,求椭圆C的离心率的取值范围。(2)若,A、B到右准线距离之和为,求椭圆C的方程。
(本小题满分14分) 一个四棱锥的三视图如图所示,E为侧棱PC上一动点。(1)画出该四棱锥的直观图,并指出几何体的主要特征(高、底等).(2)点在何处时,面EBD,并求出此时二面角平面角的余弦值.
(本小题满分12分) 2011年深圳大运会,某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K和D两个动作,比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩。假设每个运动员完成每个系列中的两个动作的得分是相互独立的,根据赛前训练统计数据,某运动员完成甲系列和乙系列的情况如下表:甲系列:
乙系列:
现该运动员最后一个出场,其之前运动员的最高得分为118分。(I)若该运动员希望获得该项目的第一名,应选择哪个系列,说明理由,并求其获得第一名的概率;(II)若该运动员选择乙系列,求其成绩X的分布列及其数学期望EX。
(本小题满分12分) 已知向量,,且(1)求的取值范围;(2)求函数的最小值,并求此时x的值
(本小题满分l4分)已知数列的前n项和为,正数数列中(e为自然对数的底)且总有是与的等差中项,的等比中项.(1) 求证: 有; (2) 求证:有.
(本小题满分l4分)如图,是抛物线:上横坐标大于零的一点,直线过点并与抛物线在点处的切线垂直,直线与抛物线相交于另一点.(1)当点的横坐标为2时,求直线的方程;(2)若,求过点的圆的方程.