在数列和中,,,,其中且,.(Ⅰ)证明:当时,数列中的任意三项都不能构成等比数列;(II)设,,试问在区间上是否存在实数使得.若存在,求出的一切可能的取值及相应的集合;若不存在,试说明理由.
在等比数列中,,,试求:(1)首项和公比;(2)前6项的和.
(本小题满分12分)如图,直三棱柱中,,分别为的中点,,二面角的大小为.(Ⅰ)证明:;(Ⅱ)求与平面所成的角的大小.
(本小题满分12分)甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为,甲、丙两台机床加工的零件都是一等品的概率为.(Ⅰ)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(Ⅱ)若让每台机床各自加工2个零件(共计6个零件),求恰好有3个零件是一等品的概率.
(本小题满分12分)如图,在三棱锥中 ,为正方形,,,为的中点.(Ⅰ)证明:;(Ⅱ)求二面角的大小.
(本小题满分12分)一个盒子中装有大小相同的2个红球和个白球,从中任取2个球.(Ⅰ)若,求取到的2个球恰好是一个红球和一个白球的概率;(Ⅱ)若取到的2个球中至少有1个红球的概率为,求.