数列的前项和为,且.(1)求: 的值;(2)是否存在,使数列是等比数列,若存在,求的取值范围并求;若不存在,说明理由.
(12分)如图,直角三角形ABC的顶点坐标A()、B(0,),顶点C在x轴上,点P为线段OA的中点,设圆M是△ABC的外接圆,若DE是圆M的任意一条直径,试探究是否是定值?若是,求出定值;若不是,请说明理由.
(12分) 已知平面区域恰好被面积最小的圆C:及其内部覆盖.(1)求圆C的方程;(2)斜率为1的直线与圆C交于不同两点A、B,满足,求直线的方程.
(12分) 已知关于的一元二次不等式 对任意实数都成立,试比较实数的大小.
要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽度为10 cm,两栏之间的中缝空白的宽度为5 cm,怎样确定广告的高与宽的尺寸(单位cm),能使矩形广告面积最小?
已知等差数列{}中.(1)求数列{}的通项公式;(2)若,求数列的前项和.