如图,在三棱锥中,已知△是正三角形,平面,,为的中点,在棱上,且, (1)求证:平面;(2)求平面与平面所成的锐二面角的余弦值;(3)若为的中点,问上是否存在一点,使平面?若存在,说明点的位置;若不存在,试说明理由.
已知:且, (1)求的取值范围; (2)求函数的最大值和最小值。
某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元。 (1)当每辆车的月租金定为3600元时,能租出多少辆车? (2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
已知集合,集合,求。
.已知:2且log, (1)求x的取值范围; (2)求函数f(x)= log()的最大值和最小值。
已知f(x)是定义在(0,+)上的增函数,且满足f(x y)=f(x)+f(y),f(2)=1。 (1)求f(8) (2)求不等式f(x)-f(x-2)>3的解集