(本小题满分10分)如图,四棱锥的底面是正方形,每条侧棱长都是底面边长的倍,P为侧棱SD上的点。(1)若,求二面角的大小;(2)在侧棱SC上是否存在一点E,使得,若存在,求的值;若不存在,试说明理由。
(本小题满分12分) 已知函数. (1)求的单调递增区间; (2)求的最大值及取得最大值时相应的的值.
(本小题满分10分) 已知. (1)求的值; (2)求的值.
在数列{an}中,a1=2,a4=8,且满足an+2=2an+1-an(n∈N*) (1)求数列{an}的通项公式 (2)设bn=2n-1·an,求数列{bn}的前n项和sn
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(旧墙需维修),其他三面围墙需新建,在旧墙对面的新墙上要留一个宽度为2m的进出口如图所示。已知旧墙的维修费用为45元/m,新墙的造价为180元/m。设利用旧墙的长度为x(单位:m),修建此矩形场地的总费用为y(单位:元) (1)将y表示为x的函数 (2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用
解关于x的不等式ax2-(a+1)x+1<0.