(本小题满分8分)设,动圆P经过点F且和直线相切,记动圆的圆心P的轨迹为曲线W.(1)求曲线W的方程;(2)过点F作互相垂直的直线分别交曲线W与A、B和C、D,求四边形ACBD面积的最小值。
如右图所示,在正三棱柱ABC—A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为,设这条最短路线与CC1的交点为N.求: (1)该三棱柱的侧面展开图的对角线长; (2)PC和NC的长.
点P(x0,y0)在椭圆+=1(a>b>0)上,x0=acos β,y0=bsin β,0<β<.直线l2与直线l1:x+y=1垂直,O为坐标原点,直线OP的倾斜角为α,直线l2的倾斜角为γ. (1)证明:点P是椭圆+=1与直线l1的唯一交点; (2)证明:tan α,tan β,tan γ构成等比数列.
已知直线x-2y+2=0经过椭圆C:+=1(a>b>0)的左顶点A和上顶点D,椭圆C的右顶点为B,点S是椭圆C上位于x轴上方的动点,直线AS、BS与直线l:x=分别交于M、N两点. (1)求椭圆C的方程; (2)求线段MN的长度的最小值; (3)当线段MN的长度最小时,在椭圆C上是否存在这样的点T,使得△TSB的面积为?若存在,确定点T的个数,若不存在,说明理由.
已知n∈N*,求证:··……>.
已知|a|<1,|b|<1,求证:>1