(本小题12分)已知函数.(I)若在[1,+∞上是增函数,求实数a的取值范围;(II)若是的极值点,求在[1,a]上的最小值和最大值.
已知求 (1) 和 的值(2)的值,并求的解析式。
选修4-5:不等式选讲函数⑴ 画出函数的图象;⑵ 若不等式恒成立,求实数的范围.
. (本题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系中,直线的参数方程为(为参数).若以坐标原点为极点,轴正半轴为极轴建立极坐标系,则曲线的极坐标方程为. (1) 求曲线C的直角坐标方程;(2) 求直线被曲线所截得的弦长.
(本题满分10分)选修4-1:几何证明与选讲如图,为直角三角形,,以为直径的圆交于点,点是边的中点,连交圆于点.⑴ 求证:四点共圆;⑵ 求证:.
(本小题满分12分)设函数.⑴ 当时,求函数在点处的切线方程;⑵ 对任意的函数恒成立,求实数的取值范围.