(本小题满分12分)已知全集,A={x||≥1},B为函数的定义域,C为()的定义域;(1);;(2)若,求实数的取值范围;
如图,正方形ABCD所在的平面与三角形CDE所在的平面交于CD,AE⊥平面CDE,且AB=2AE.(1)求证:AB∥平面CDE;(2)求证:平面ABCD⊥平面ADE.
如图,在四棱锥PABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=90°,且AB=2AD=2DC=2PD=4,E为PA的中点. (1)求证:DE∥平面PBC;(2)求证:DE⊥平面PAB.
设椭圆M:=1(a>)的右焦点为F1,直线l:x=与x轴交于点A,若=2 (其中O为坐标原点).(1)求椭圆M的方程;(2)设P是椭圆M上的任意一点,EF为圆N:x2+(y-2)2=1的任意一条直径(E,F为直径的两个端点),求·的最大值.
已知直线l:y=x+,圆O:x2+y2=5,椭圆E:=1(a>b>0)的离心率e=,直线l被圆O截得的弦长与椭圆的短轴长相等.(1)求椭圆E的方程;(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两条切线的斜率之积为定值.
如图,在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的离心率为,以坐标原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.(1)求椭圆C的方程;(2)已知点P(0,1),Q(0,2),设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T.求证:点T在椭圆C上.