(本小题满分10分)在中,角A、B、C所对的边分别为a、b、c,且(1)求内角A的度数;(2)求的范围。
(12分)为了在如图所示的直河道旁建造一个面积为5000m2的矩形堆物场,需砌三面砖墙BC、CD、DE,出于安全原因,沿着河道两边需向外各砌10m长的防护砖墙AB、EF,若当BC的长为xm时,所砌砖墙的总长度为ym,且在计算时,不计砖墙的厚度,求 (1)y关于x的函数解析式y=f(x); (2)若BC的长不得超过40m,则当BC为何值时,y有最 小值,并求出这个最小值.
(12分)如图,在四棱锥中,底面,,,是的中点. (Ⅰ)求和平面所成的角的大小; (Ⅱ)证明平面; (Ⅲ)求二面角的正弦值.
(12分)已知:,:().若“非”是“非”的必要而不充分条件,求实数的取值范围.
(12分)在中,已知内角,边.设内角,周长为. (1)求函数的解析式和定义域 (2)求的最大值
如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是地面边长的倍,P为侧棱SD上的点。 (1)求证:AC⊥SD; (2)若SD⊥平面PAC,求二面角P-AC-D的大小 (3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,试说明理由。