已知直线过P(3,-2)点,求:(1)原点到直线距离最大的的方程。(2)原点到距离为3的的方程。
本题共有2个小题,第1小题满分6分,第2小题满分8分。已知数列是各项均不为的等差数列,公差为,为其前项和,且满足,.数列满足,为数列的前n项和.(1)求、和;(2)若对任意的,不等式恒成立,求实数的取值范围
本题共有2个小题,第1小题满分6分,第2小题满分8分。如图,已知四棱锥P—ABCD,底面ABCD为矩形,,PA平面ABCD, E,F分别是BC,PC的中点。(1)求异面直线PB与AC所成的角的余弦值;(2)求三棱锥的体积。
小明购买一种叫做“买必赢”的彩票,每注售价10元,中奖的概率为2%,如果每注奖的奖金为300元,那么小明购买一注彩票的期望收益是多少元?
(本小题满分14分)已知函数.(Ⅰ)若曲线在点处的切线与直线垂直,求函数的单调区间;(Ⅱ)若对于都有成立,试求的取值范围;(Ⅲ)记.当时,函数在区间上有两个零点,求实数的取值范围.
(本小题满分l2分)已知数列{an}中,a1=1,a2=3且2an+1=an+2+an(n∈N*).数列{bn}的前n项和为Sn,其中b1=-,bn+1=-Sn(n∈N*).(1)求数列{an}和{bn}的通项公式;(2)若Tn=++…+,求Tn的表达式