(本小题满分12分)已知,函数.(1)若函数在区间内是减函数,求实数的取值范围;(2)求函数在区间上的最小值;(3)对(2)中的,若关于的方程有两个不相等的实数解,求实数的取值范围.
已知集合,,,.(1)求; (2)若,求实数的取值范围.
在数列和中,,,,其中且,.(Ⅰ)若,,求数列的前项和;(Ⅱ)证明:当时,数列中的任意三项都不能构成等比数列;(Ⅲ)设,,试问在区间上是否存在实数使得.若存在,求出的一切可能的取值及相应的集合;若不存在,试说明理由.
已知焦点在轴,顶点在原点的抛物线经过点P(2,2),以上一点为圆心的圆过定点(0,1),记为圆与轴的两个交点.(1)求抛物线的方程;(2)当圆心在抛物线上运动时,试判断是否为一定值?请证明你的结论;(3)当圆心在抛物线上运动时,记,,求的最大值.
已知函数,点为一定点,直线分别与函数的图象和轴交于点,,记的面积为.(1)当时,求函数的单调区间;(2)当时, 若,使得, 求实数的取值范围.
某中学校本课程共开设了共门选修课,每个学生必须且只能选修门选修课,现有该校的甲、乙、丙名学生.(Ⅰ)求这名学生选修课所有选法的总数;(Ⅱ)求恰有门选修课没有被这名学生选择的概率;(Ⅲ)求选修课被这名学生选择的人数的分布列和数学期望.