(本小题满分12分)已知集合(1)求 (2)若的取值范围.
如图,已知椭圆过点,离心率为,左、右焦点分别为、.点为直线上且不在轴上的任意一点,直线和与椭圆的交点分别为、和、,为坐标原点.设直线、的斜率分别为、. (i)证明:; (ii)问直线上是否存在点,使得直线、、、的斜率、、、满足?若存在,求出所有满足条件的点的坐标;若不存在,说明理由.
已知函数. (1)求的单调区间; (2)当时,判断和的大小,并说明理由; (3)求证:当时,关于的方程:在区间上总有两个不同的解.
已知椭圆的中心在原点,焦点在轴上.若椭圆上的点到焦点、的距离之和等于4. (1)写出椭圆的方程和焦点坐标. (2)过点的直线与椭圆交于两点、,当的面积取得最大值时,求直线的方程.
如图,矩形中,,,平面,,,为的中点. (1)求证:平面. (2)若,求平面与平面所成锐二面角的余弦值.
甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为、、,且他们是否破译出密码互不影响,若三人中只有甲破译出密码的概率为. (1)求的值. (2)设甲、乙、丙三人中破译出密码的人数为,求的分布列和数学期望.