定长为3的线段两端点分别在轴,轴上滑动,在线段上,且(1)求点的轨迹的方程.(2)设过且不垂直于坐标轴的直线交轨迹与两点.问:线段上是否存在一点,使得以为邻边的平行四边形为菱形?作出判断并证明.
气象部门提供了某地今年六月份(30天)的日最高气温的统计表如下:
由于工作疏忽,统计表被墨水污染,Y和Z数据不清楚,但气象部门提供的资料显示,六月份的日最高气温不高于32℃的频率为0.9.某水果商根据多年的销售经验,六月份的日最高气温t (单位:℃)对西瓜的销售影响如下表:
(Ⅰ) 求, 的值;(Ⅱ) 若视频率为概率,求六月份西瓜日销售额的期望和方差;(Ⅲ) 在日最高气温不高于32℃时,求日销售额不低于5千元的概率.
已知各项为正数的等差数列满足,,且().(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前n项和.
已知为奇函数,且当时,.当时,的最大值为,最小值为,求的值.
已知是定义在上的奇函数,且在上是减函数,解不等式.
已知函数且.(1)求的值;(2)判断在上的单调性,并给予证明.