(本题满分12分)投掷飞碟的游戏中,飞碟投入红袋记2分,投入蓝袋记1分,未投入袋记0分.现知某人在以前投掷1000次的试验中,有500次入红袋,250次入蓝袋,其余不能入袋(1)求该人在4次投掷中恰有三次投入红袋的概率;(2) 求该人两次投掷后得分的分布列和数学期望.
已知为定义在R上的奇函数,当时,为二次函数,且满足,在上的两个零点为和. (1)求函数在R上的解析式; (2)作出的图象,并根据图象讨论关于的方程根的个数.
已知函数。 (1)求函数的定义域; (2)判断函数的奇偶性,并证明; (3)求使的的取值范围.
已知集合,. (1)当时,求集合,∁; (2)若,求实数的取值范围.
已知定义在上的函数f(x)同时满足下列三个条件: ①f(3)=﹣1;②对任意x、y∈都有f(xy)=f(x)+f(y);③x>1时,f(x)<0. (1)求f(9)、的值; (2)证明:函数f(x)在上为减函数; (3)解关于x的不等式f(6x)<f(x﹣1)﹣2.
已知函数f(x)=|x﹣1|+|x+1|(x∈R) (1)证明:函数f(x)是偶函数; (2)利用绝对值及分段函数知识,将函数解析式写成分段函数的形式,然后画出函数图象,并写出函数的值域; (3)在同一坐标系中画出直线y=x+2,观察图象写出不等式f(x)>x+2的解集.