(本小题满分12分)设集合,.(1)当a=3时,求;(2)若,求a的取值范围.
如图,我市有一个健身公园,由一个直径为2km的半圆和一个以为斜边的等腰直角三角形构成,其中为的中点.现准备在公园里建设一条四边形健康跑道,按实际需要,四边形的两个顶点分别在线段上,另外两个顶点在半圆上, ,且间的距离为1km.设四边形的周长为km. (1)若分别为的中点,求长; (2)求周长的最大值.
在长方体中,分别是的中点,,过三点的的平面截去长方体的一个角后.得到如图所示的几何体,且这个几何体的体积为. (1)求证://平面; (2)求的长; (3)在线段上是否存在点,使直线与垂直,如果存在,求线段的长,如果不存在,请说明理由.
已知的周长为,且 (1)求边的长; (2)若的面积为,求角.
设是给定的正整数,有序数组()中或. (1)求满足“对任意的,,都有”的有序数组()的个数; (2)若对任意的,,,都有成立,求满足“存在,使得”的有序数组()的个数
【原创】(本小题满分10分)从棱长为1的正方体的8个顶点中任取3个点,设随机变量ξ是以这三点为顶点的三角形的面积. (1)求概率; (2)求ξ的分布列,并求其数学期望E(ξ ).