为了降低能源损耗,某体育馆的外墙需要建造隔热层.体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:(,为常数),若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.(1)求的值及的表达式;(2)隔热层修建多厚时,总费用达到最小?并求出最小值.
必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.在三棱锥ABCD中,平面DBC⊥平面ABC,△ABC为正三角形, AC=2,DC=DB=,(1)求DC与AB所成角的余弦值;(2)在平面ABD上求一点P,使得CP⊥平面AB D.
必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.某商场搞促销,当顾客购买商品的金额达到一定数量之后可以抽奖,根据顾客购买商品的金额,从箱中(装有4只红球,3只白球,且除颜色外,球的外部特征完全相同)每抽到一只红球奖励20元的商品(当顾客通过抽奖的方法确定了获奖商品后,即将小球全部放回箱中)(1)当顾客购买金额超过500元而少于1000元(含1000元)时,可从箱中一次随机抽取3个小红球,求其中至少有一个红球的概率;(2)当顾客购买金额超过1000元时,可一次随机抽取4个小球,设他所获奖商品的金额为元,求的概率分布列和数学期望.
D.选修4-5:不等式选讲已知实数满足,求的最小值;
C. 选修4-4:坐标系与参数方程在极坐标系中,圆的极坐标方程为,(1)过极点的一条直线与圆相交于,A两点,且∠,求的长.
B.选修4-2:矩阵与变换已知矩阵A,其中,若点在矩阵A的变换下得到.(1)求实数的值;(2)矩阵A的特征值和特征向量.