(本小题满分12分)已知数列是等差数列,是等比数列,且,,. (1)求数列和的通项公式 (2)数列满足,求数列的前项和.
已知是定义在上的奇函数,当时,.(1)求;(2)求的解析式;(3)若,求区间.
已知函数是定义在上的增函数,对于任意的,都有,且满足.(1)求的值; (2)求满足的的取值范围.
记函数的定义域为集合,函数的定义域为集合.(Ⅰ)求和;(Ⅱ)若,求实数的取值范围.
(满分14分)已知圆O:,直线.(1)若直线l与圆O交于不同的两点A,B,当∠AOB=时,求k的值.(2)若,P是直线l上的动点,过P作圆O的两条切线PC、PD,切点为C、D,探究:直线CD是否过定点;(3)若EF、GH为圆O:的两条相互垂直的弦,垂足为M(1,),求四边形EGFH的面积的最大值。
(满分13分)如图所示,正四棱锥P-ABCD中,O为底面正方形的中心,侧棱PA与底面ABCD所成的角的正切值为.(1)求侧面PAD与底面ABCD所成的二面角的大小;(2)若E是PB的中点,求异面直线PD与AE所成角的正切值;(3)问在棱AD上是否存在一点F,使EF⊥侧面PBC,若存在,试确定点F的位置;若不存在,说明理由.