某寻呼台共有客户3000人,若寻呼台准备了100份小礼品,邀请客户在指定时间来领取.假设任一客户去领奖的概率为4%.问:寻呼台能否向每一位顾客都发出奖邀请?若能使每一位领奖人都得到礼品,寻呼台至少应准备多少礼品?
已知函数. (I) 当,求的最小值; (II) 若函数在区间上为增函数,求实数的取值范围; (III)过点恰好能作函数图象的两条切线,并且两切线的倾斜角互补,求实数的取值范围.
已知抛物线的焦点为,准线为,点为抛物线C上的一点,且的外接圆圆心到准线的距离为. (I)求抛物线C的方程; (II)若圆F的方程为,过点P作圆F的2条切线分别交轴于点,求面积的最小值时的值.
如图,已知四棱锥P-ABCD的底面为菱形,且∠ABC =60°,AB=PC=2,AP=BP=. (Ⅰ)求证:平面PAB⊥平面ABCD ; (Ⅱ)求二面角A-PC-D的平面角的余弦值.
设公比大于零的等比数列的前项和为,且,,数列的前项和为,满足,,. (Ⅰ)求数列、的通项公式; (Ⅱ)满足对所有的均成立,求实数的取值范围.
在△ABC中,角A,B,C所对的边分别为,已知函数R). (Ⅰ)求函数的最小正周期和最大值; (Ⅱ)若函数在处取得最大值,且,求的面积.