我国是水资源比较贫乏的国家之一.目前,某市就节水问题,召开了市民听证会,并对水价进行激烈讨论,会后拟定方案如下:以户为单位,按月收缴,水价按照每户每月用水量分三级管理,第一级为每月用水量不超过12吨,每吨3.5元;第二级计量范围为超过12吨不超过18吨部分,第三级计量范围为超出18吨的部分,一、二、三级水价的单价按1:3:5计价.(1)请写出每月水费(元)与用水量(吨)之间的函数关系;(2)某户居民当月交纳水费为63元,该户当月用水多少吨?
(本小题满分14分)已知函数. (1)求函数的单调区间; (2)若恒成立,试确定实数k的取值范围; (3)证明:.
(本小题满分13分) 已知,若且,在内有最大值无最小值. (1)求的最小正周期; (2)在中,、、分别是角A、B、C的对边,,其面积,求周长的最小值.
(本小题满分12分)已知数列{an},a1=1,an=λan-1+λ-2(n≥2). (1)当λ为何值时,数列{an}可以构成公差不为零的等差数列,并求其通项公式; (2)若λ=3,求数列{an}的通项公式an.
(本小题满分12分)() (1)求的定义域; (2)问是否存在实数、,当时,的值恰取到一切正数,且若存在,求出、的值,若不存在,说明理由.
(本小题满分12分)在△ABC中,a、b、c分别是角A、B、C的对边,且, (1)求角B的大小;(2)若,求△ABC的面积.