(本小题满分14分)等差数列的各项均为正数,,前项和为,为等比数列, ,且 .(1)求与;(2)求数列的前项和。(3)若对任意正整数和任意恒成立,求实数的取值范围.
已知函数 (1)若有极值,求b的取值范围; (2)若在处取得极值时,当恒成立,求c的取值范围; (3)若在处取得极值时,证明:对[-1,2]内的任意两个值都有.
设函数 (Ⅰ) 证明: 当0< a < b ,且时,ab >1; (Ⅱ) 点P (x0, y0 ) (0< x0 <1 )在曲线y=f(x)上,求曲线在点P处的切线与x轴和y轴的正向所围成的三角形面积表达式(用x0表达).
已知(1)当a=1时,试求函数的单调区间,并证明此时方程=0只有一个实数根,并求出此实数根; (2)证明:
如图,平行四边形OABC,顶点O、A、C分别表示0,,, 试求:(1)所表示的复数,所表示的复数. (2)对角线所表示的复数. (3)对角线所表示的复数及的长度.
,求对应的点的轨迹方程.