(本小题满分14分)已知函数(1)若,求的单调递减区间;(2)若,且存在使得,求实数的取值范围。
双曲线=1的实轴为A1A2,点P是双曲线上的一个动点,引A1Q⊥A1P,A2Q⊥A2P,A1Q与A2Q的交点为Q,求Q点的轨迹方程.
已知A、B、C是直线l上的三点,且|AB|=|BC|=6,⊙O′切直线l于点A,又过B、C作⊙O′异于l的两切线,设这两切线交于点P,求点P的轨迹方程.
设数列{an}的前n项和Sn=na+n(n-1)b,(n=1,2,…),a、b是常数且b≠0.(1)证明:{an}是等差数列. (2)证明:以(an,-1)为坐标的点Pn(n=1,2,…)都落在同一条直线上,并写出此直线的方程.(3)设a=1,b=,C是以(r,r)为圆心,r为半径的圆(r>0),求使得点P1、P2、P3都落在圆C外时,r的取值范围.
已知过原点O的一条直线与函数y=log8x的图象交于A、B两点,分别过点A、B作y轴的平行线与函数y=log2x的图象交于C、D两点. (1)证明: 点C、D和原点O在同一直线上. (2)当BC平行于x轴时,求点A的坐标.
已知a>0,b>0,且a+b="1." 求证: (a+)(b+)≥.