一条直线经过点P(3,2),并且分别满足下列条件,求直线方程:(1)倾斜角是直线x-4y+3=0的倾斜角的2倍;(2)与x、y轴的正半轴交于A、B两点,且△AOB的面积最小(O为坐标原点).
(本小题12分)化简下列各式:(1); (2)。
(本小题满分14分)已知抛物线,直线截抛物线C所得弦长为. (1)求抛物线的方程; (2)已知是抛物线上异于原点的两个动点,记若试求当取得最小值时的最大值.
(本小题满分13分)已知函数在处取得极小值. (1)求的值; (2)若在处的切线方程为,求证:当时,曲线不可能在直线的下方.
(本小题满分12分)已知等比数列的首项,公比,数列前项的积记为. (1)求使得取得最大值时的值; (2)证明中的任意相邻三项按从小到大排列,总可以使其成等差数列,如果所有这些等差数列的公差按从小到大的顺序依次设为,证明:数列为等比数列.(参考数据)
(本小题满分12分)如图是三棱柱的三视图,正(主)视图和俯视图都是矩形,侧(左)视图为等边三角形,为的中点. (1)求证:∥平面; (2)设垂直于,且,求点到平面的距离.