(本小题满分12分) 某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
对任意,给定区间,设函数表示实数与的给定区间内整数之差的绝对值.
YCY
(1)当的解析式;当Z)时,写出用绝对值符号表示的的解析式,并说明理由;
已知函数. (1)当a=3时,求f(x)的零点; (2)求函数y=f (x)在区间[1,2]上的最小值.
设 (I)已知上单调性一致,求a的取值范围; (II)设,证明不等式
已知函数 (I)求函数的极值; (II)若对任意的的取值范围。
某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆。本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为0.7x,年销售量也相应增加。已知年利润=(每辆车的出厂价—每辆车的投入成本)×年销售量。 (I)若年销售量增加的比例为0.4x,为使本年度的年利润比上年度有所增加,则投入成本增加的比例x应在什么范围内? (II)年销售量关于x的函数为为何值时,本年度的年利润最大?最大利润为多少?