将A、B两枚骰子各抛掷一次,观察向上的点数,问:(I)共有多少种不同的结果?(II)两枚骰子点数之和是3的倍数的结果有多少种?(III)两枚骰子点数之和是3的倍数的概率是多少?
如图所示,在四棱锥中,底面ABCD为菱形,, Q为AD的中点. (Ⅰ)若,求证:平面平面; (Ⅱ)点M在线段PC上,若平面平面ABCD,且,三棱锥的体积, 求二面角的大小.
已知等差数列的前项和为,为等比数列,且,。 (1)求数列,的通项公式; (2)求数列的前n项和。
在中,角的对边分别为且 (1)求的值; (2)若,且,求的面积.
已知函数. (Ⅰ)求不等式的解集; (Ⅱ)若关于的不等式恒成立,求实数的取值范围.
在直角坐标系中,半圆C的参数方程为(为参数,),以O为极点,x轴的非负半轴为极轴建立极坐标系. (Ⅰ)求C的极坐标方程; (Ⅱ)直线的极坐标方程是,射线OM:与半圆C的交点为O、P,与直线的交点为Q,求线段PQ的长.