已知函数(1)判断的单调性并证明;(2)若满足,试确定的取值范围。(3)若函数对任意时,恒成立,求的取值范围。
如图,椭圆C:=1(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为.不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.(1)求椭圆C的方程;(2)求△ABP面积取最大值时直线l的方程.
已知椭圆=1(a>b>0)的离心率为,且过点P,A为上顶点,F为右焦点.点Q(0,t)是线段OA(除端点外)上的一个动点,过Q作平行于x轴的直线交直线AP于点M,以QM为直径的圆的圆心为N.(1)求椭圆方程;(2)若圆N与x轴相切,求圆N的方程;(3)设点R为圆N上的动点,点R到直线PF的最大距离为d,求d的取值范围.
已知椭圆=1(a>b>0)的离心率为,短轴的一个端点为M(0,1),直线l:y=kx-与椭圆相交于不同的两点A、B.(1)若AB=,求k的值;(2)求证:不论k取何值,以AB为直径的圆恒过点M.
如图,设E:=1(a>b>0)的焦点为F1与F2,且P∈E,∠F1PF2=2θ.求证:△PF1F2的面积S=b2tanθ.
如图,已知椭圆C的方程为+y2=1,A、B是四条直线x=±2,y=±1所围成的矩形的两个顶点.(1)设P是椭圆C上任意一点,若=m+n,求证:动点Q(m,n)在定圆上运动,并求出定圆的方程;(2)若M、N是椭圆C上两个动点,且直线OM、ON的斜率之积等于直线OA、OB的斜率之积,试探求△OMN的面积是否为定值,并说明理由.