已知函数(1)当时,求的极小值;(2)设,求的最大值.
已知a、b、c是互不相等的非零实数.若用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.
已知复数,,求的取值范围。
命题方程有两个不等的正实数根, 命题方程无实数根。若“或”为真命题,求的取值范围。
函数在同一个周期内,当 时,取最大值1,当时,取最小值。(1)求函数的解析式(2)函数的图象经过怎样的变换可得到的图象?(3)若函数满足方程求在内的所有实数根之和.
某港口海水的深度(米)是时间(时)()的函数,记为:已知某日海水深度的数据如下:
经长期观察,的曲线可近似地看成函数的图象(I)试根据以上数据,求出函数的振幅、最小正周期和表达式;(II)一般情况下,船舶航行时,船底离海底的距离为米或米以上时认为是安全的(船舶停靠时,船底只需不碰海底即可)。某船吃水深度(船底离水面的距离)为米,如果该船希望在同一天内安全进出港,请问,它至多能在港内停留多长时间(忽略进出港所需时间)