已知数列{an}中,a1=,an=2-,(n≥2,n∈N*),数列{bn}满足bn=,(n∈N*).(1)求证:数列{bn}是等差数列;(2)求数列{an}中的最大项和最小项,并说明理由.
设函数,其中.(1)当时,求曲线在点处的切线的斜率;(2)求函数的单调区间与极值;(3)已知函数由三个互不相同的零点,且,若对任意的,恒成立,求实数的取值范围.
已知递增的等比数列的前n项和满足:,且是和的等差中项(1)求数列的通项公式;(2)若,求使成立的正整数n的值.
已知向量,且,若相邻两对称轴的距离不小于.(1)求正实数的取值范围;(2)在中,分别是的对边,,当最大时,,试求的面积.
已知函数的定义域为不等式的解集,且在定义域内单调递减,求实数的取值范围.
数列的前n项和为.(1)求数列的通项公式;(2)等差数列的各项为正,其前项和记为,且,又成等比数列求.