设函数,。(1)求函数的单调区间和极值。(2)若关于的方程="a" 有三个不同实根,求实数a的取值范围。(3)已知当时,恒成立,求实数的取值范围。
已知函数 (Ⅰ)求函数的最小正周期; (Ⅱ)确定函数在上的单调性并求在此区间上的最小值.
如图所示,四棱锥中,底面是个边长为的正方形,侧棱底面,且,是的中点. (I)证明:平面; (II)求三棱锥的体积.
中,角的对边分别为.已知. (I)求; (II)若,的面积为,且,求.
设的导数为,若函数的图象关于直线对称,且函数在处取得极值. (I)求实数的值; (II)求函数的单调区间.
已知椭圆的左右焦点分别是,离心率,为椭圆上任一点,且的最大面积为. (Ⅰ)求椭圆的方程; (Ⅱ)设斜率为的直线交椭圆于两点,且以为直径的圆恒过原点,若实数满足条件,求的最大值.